PID Controller Explainer
Simple overview of what a PID controller is, how it works, and how to make one yourself.
Sep 29, 2022I was recently trying to explain PID controllers to someone and realized that I didn’t have a very good intuitive understanding of what they’re useful for and how they work. When looking around the web, I had trouble finding a straightforward explainer. So in this post, I’ll give (hopefully) simple answers to some basic questions that I had about PID controllers.
What is a PID controller?
A PID controller is a way to solve problems with the following formulation:
- You can change some input to the system, called the process variable
- You have a sensor which monitors something about the system
- You want the sensor measurement to be close to some target value, called the set point
The PID controller is a good way to decide what the input to the system should be without knowing anything about the internal workings of the system, except that the change in output is roughly proportional to the input.
Example Use Cases
3D Printing
When running a 3D printer, you want the nozzle end to be a specific temperature. You control the temperature by regulating the voltage through a hot end - higher voltage makes the temperature go up, whereas if you turn it off entirely the temperature will go down (sometimes helped by a fan next to the extruder). You likely want to change the temperature during the course of printing, and you want it to reach the target temperature as quickly as possible. Changing the voltage affects the rate of change in temperature rather than the temperature itself.
Vehicle Control
When driving a car, you regulate the speed by controlling how much to open the throttle. Opening the throttle will cause the car to accelerate, while closing it will cause the car to decelerate. You want the car to reach some set speed as quickly as possible. Changing the throttle toggles the acceleration and not the velocity, but the variable you care about controlling is the velocity.
Medicine
When giving vasopressors to a patient in a hospital, you want them to reach some target blood pressure. After injecting a particular amount, the patient’s blood pressure will go up or down. Changing that amount will change the rate of change of their blood pressure. You want to reach the target blood pressure as quickly as possible without overshooting.
How do PID controllers work?
To answer this question, I think the best way is to start off with an easy-to-understand controller, then add on top of it until we get to the final PID formulation.
A Simple Controller
You could write a control rule like this:
- If the sensor measurement is too low, set the system input to “positive” (try to make the sensor measurement higher)
- If the sensor measurement is too high, set the system input to “negative” (try to make the sensor measurement lower)
However, if the system has inertia (in other words, a delay between the change in input and the change in output), then this control algorithm will start oscillating as you repeatedly undershoot and overshoot. Inertia can happen in lots of different ways and is common in most systems that you would actually want to control. An improvement to this could be to scale the input relative to the error, so that as your error gets smaller, you decrease your input.
In this case, we introduce an additional scaling constant , which relates the size of the error to the size of the input. For example, in the case of our 3D printer, our error is the difference between the target temperature and the observed temperature, while our input is the voltage, so we need to convert from degrees celcius to volts somehow.
We can try these out with some sample numbers to demonstrate the idea. Suppose our target temperature is and our current temperature is . We can use some scaling constant .
After some time, the temperature increases to .
As expected, our input is smaller than when the error was larger, since we want to make the temperature delta smaller as we get closer to our target temperature.
Let’s say a bit later the system has gotten hotter, and now our reading is .
As expected, now that we’ve overshot our target temperature, we need to supply an input in the opposite direction. Note that the input voltage is relative to some zero point, since we can’t actually have a negative input voltage.
Using this Controller
Here’s a simple program to simulate a 3D printer nozzle. Note that the heater simulator is only a very loose approximation to the behavior of the actual heater, and can stand in for any black box system that you might want to use a PID controller for.
import argparse
import matplotlib.pyplot as plt
class SimpleController:
def __init__(self, trg_temp: float, kp: float, v_offset: float) -> None:
"""Initializes a simple controller.
Args:
trg_temp: The target temperature
kp: The P scaling constant
v_offset: The zero point voltage
"""
self.trg_temp = trg_temp
self.kp = kp
self.v_offset = v_offset
def step(self, temperature: float) -> float:
"""Gets the target voltage for the current timestep.
Args:
temperature: The last observed temperature
Returns:
The input voltage for the next timestep
"""
error = self.trg_temp - temperature
return self.kp * error + self.v_offset
class HeaterSimulator:
def __init__(
self,
dt: float,
amb_temp: float,
min_voltage: float,
max_voltage: float,
heat_coeff: float,
area: float,
voltage_coeff: float,
inertia: float,
) -> None:
"""Initializes the heater simulator.
Args:
dt: The timestep size, in seconds
amb_temp: The ambient temperature
min_voltage: The minimum input voltage
max_voltage: The maximum input voltage
heat_coeff: Heat transfer coefficient
area: Heater surface area
voltage_coeff: The voltage-to-temperature-delta coefficient
inertia: System inertia
"""
self.dt = dt
self.amb_temp = amb_temp
self.min_voltage = min_voltage
self.max_voltage = max_voltage
self.heat_coeff = heat_coeff
self.area = area
self.voltage_coeff = voltage_coeff
self.inertia = inertia
# Heater temperatures starts at the ambient temperature.
self.temperature = amb_temp
# Add some inertia to dtemp.
self.dtemp = 0.0
def step(self, voltage: float) -> None:
"""Runs the simulator for one step.
Args:
voltage: The input voltage
"""
q_rate = self.heat_coeff * self.area * (self.amb_temp - self.temperature)
v_rate = self.voltage_coeff * voltage
trg_dtemp = q_rate + v_rate
self.dtemp = self.inertia * self.dtemp + (1 - self.inertia) * trg_dtemp
self.temperature += self.dtemp * self.dt
def main() -> None:
parser = argparse.ArgumentParser(description="Heater PID simulation")
parser.add_argument("--kp", type=float, nargs="+", required=True, help="P scale")
parser.add_argument("--dt", type=float, default=0.01, help="Timestep size")
parser.add_argument("--total-steps", type=int, default=10000, help="Number of simulation steps")
parser.add_argument("--amb-temp", type=float, default=20.0, help="Ambient temperature")
parser.add_argument("--trg-temp", type=float, default=210.0, help="Target temperature")
parser.add_argument("--v-offset", type=float, default=3.0, help="Offset voltage")
parser.add_argument("--min-voltage", type=float, default=0.0, help="Minimum voltage")
parser.add_argument("--max-voltage", type=float, default=24.0, help="Maximum voltage")
parser.add_argument("--area", type=float, default=1e-4, help="Surface area of the heater")
parser.add_argument("--heat-coeff", type=float, default=100.0, help="Heat transfer coefficient")
parser.add_argument("--voltage-coeff", type=float, default=1.0, help="Voltage coefficient")
parser.add_argument("--inertia", type=float, default=0.99, help="System inertia")
args = parser.parse_args()
# Plots the simulated temperatures.
plt.figure()
for kp in args.kp:
# Simulator.
simulator = HeaterSimulator(
dt=args.dt,
amb_temp=args.amb_temp,
min_voltage=args.min_voltage,
max_voltage=args.max_voltage,
heat_coeff=args.heat_coeff,
area=args.area,
voltage_coeff=args.voltage_coeff,
inertia=args.inertia,
)
# Controller.
controller = SimpleController(
trg_temp=args.trg_temp,
kp=kp,
v_offset=args.v_offset,
)
# Heater starts at ambient temperature.
temperatures = [simulator.temperature]
voltages = [0.0]
times = [i * args.dt for i in range(1, args.total_steps + 1)]
for _ in times:
voltage = controller.step(simulator.temperature)
voltages.append(voltage)
simulator.step(voltage)
temperatures.append(simulator.temperature)
times = [0.0] + times
# Plot temperature.
plt.plot(times, temperatures, label=f"Kp = {kp:.4g}")
plt.ylabel("Temperature")
# Plot voltages.
# plt.plot(times, voltages, label=f"Kp = {kp:.4g}")
# plt.ylabel("Voltage")
plt.xlabel("Time")
plt.legend()
plt.show()
if __name__ == "__main__":
main()
Here is just the controller, without the boilerplate for running it.
class SimpleController:
def __init__(self, trg_temp: float, kp: float, v_offset: float) -> None:
"""Initializes a simple controller.
Args:
trg_temp: The target temperature
kp: The P scaling constant
v_offset: The zero point voltage
"""
self.trg_temp = trg_temp
self.kp = kp
self.v_offset = v_offset
def step(self, temperature: float) -> float:
"""Gets the target voltage for the current timestep.
Args:
temperature: The last observed temperature
Returns:
The input voltage for the next timestep
"""
error = self.trg_temp - temperature
return self.kp * error + self.v_offset
We can run this script using:
python simulator.py --kp 0.05 0.1 0.2 0.4 0.8
You can try running this script yourself to see how playing with different parts of the system affect the temperature curves. In particular, --v-offset
and --inertia
are interesting parameters to play with.
The resulting temperature curves for the built-in configuration are as follows:
Proportional, Integral, Derivative
PID stands for “proportional, integral, derivative” and is a way to address some issues with the above model. Namely, there are two issues that we want to address:
- Undershoot: Our input is too weak, and the output isn’t changing quickly enough in response to a change in input
- Overshoot: Our input is too strong, and the output is changing too quickly
Among the temperature curves above, the overshoots the most, while the undershoots the most.
Integral Control
Consider the case in which we are undershooting our target value. We can detect that we’re undershooting if the error isn’t going down fast enough. The way we do this is by adding an additional term which accounts for the accumulated error using integration.
We can approximate this by keeping track of our running error:
This controller can work on its own, and will correct for undershooting. However, it will tend to oscillate.
Here’s a few temperature curves for an undershooting proportional controller, with different integral controller coefficients.
Derivative Control
Consider the case in which we are overshooting our target value. We can detect that we’re about to overshoot if the error is decreasing too quickly. We can add another term to the controller which takes this into account, using the derivative of the error.
The desired behavior is to decrease the input if the error is getting smaller too quickly, and increase the input if the error is getting smaller too slowly. This can be expressed as a function of the derivative of the error:
We can approximate this by keeping track of our past error:
This controller won’t work on its own, because the error shouldn’t change without changing the input. The power of this controller is to help correct for the overshooting behavior of our original controller.
Here’s a few temperature curves for an overshooting proportional controller, with different derivative controller coefficients.
Updating our Controller
We can put together each of our controllers into the final PID controller formulation shown below:
where is the error, is the proportional controller coefficient, is the integral controller coefficient, is the derivative controller coefficient, and is the timestep size.
A Python implementation for this controller can be found below.
import argparse
import itertools
from typing import Optional
import matplotlib.pyplot as plt
class PIDController:
def __init__(
self,
dt: float,
trg_temp: float,
kp: float,
ki: float,
kd: float,
v_offset: float,
) -> None:
"""Initializes a simple controller.
Args:
dt: The timestep size, in seconds
trg_temp: The target temperature
kp: The P scaling constant
ki: The I scaling constant
kd: The D scaling constant
v_offset: The zero point voltage
"""
self.dt = dt
self.trg_temp = trg_temp
self.kp = kp
self.ki = ki
self.kd = kd
self.v_offset = v_offset
self.prev_error: Optional[float] = None
self.acc_error: Optional[float] = None
def step(self, temperature: float) -> float:
"""Gets the target voltage for the current timestep.
Args:
temperature: The last observed temperature
Returns:
The input voltage for the next timestep
"""
error = self.trg_temp - temperature
# Proportional control.
p_term = self.kp * error
# Integral control.
acc_error = error if self.acc_error is None else error + self.acc_error
self.acc_error = acc_error
i_term = self.ki * acc_error
# Derivative control.
delta_error = 0.0 if self.prev_error is None else error - self.prev_error
self.prev_error = error
d_term = self.kd * delta_error
return p_term + i_term + d_term + self.v_offset
class HeaterSimulator:
def __init__(
self,
dt: float,
amb_temp: float,
min_voltage: float,
max_voltage: float,
heat_coeff: float,
area: float,
voltage_coeff: float,
inertia: float,
) -> None:
"""Initializes the heater simulator.
Args:
dt: The timestep size, in seconds
amb_temp: The ambient temperature
min_voltage: The minimum input voltage
max_voltage: The maximum input voltage
heat_coeff: Heat transfer coefficient
area: Heater surface area
voltage_coeff: The voltage-to-temperature-delta coefficient
inertia: System inertia
"""
self.dt = dt
self.amb_temp = amb_temp
self.min_voltage = min_voltage
self.max_voltage = max_voltage
self.heat_coeff = heat_coeff
self.area = area
self.voltage_coeff = voltage_coeff
self.inertia = inertia
# Heater temperatures starts at the ambient temperature.
self.temperature = amb_temp
# Add some inertia to dtemp.
self.dtemp = 0.0
def step(self, voltage: float) -> None:
"""Runs the simulator for one step.
Args:
voltage: The input voltage
"""
q_rate = self.heat_coeff * self.area * (self.amb_temp - self.temperature)
v_rate = self.voltage_coeff * voltage
trg_dtemp = q_rate + v_rate
self.dtemp = self.inertia * self.dtemp + (1 - self.inertia) * trg_dtemp
self.temperature += self.dtemp * self.dt
def main() -> None:
parser = argparse.ArgumentParser(description="Heater PID simulation")
parser.add_argument("--kp", type=float, nargs="+", required=True, help="P scale")
parser.add_argument("--ki", type=float, nargs="+", required=True, help="I scale")
parser.add_argument("--kd", type=float, nargs="+", required=True, help="D scale")
parser.add_argument("--dt", type=float, default=0.01, help="Timestep size")
parser.add_argument("--total-steps", type=int, default=10000, help="Number of simulation steps")
parser.add_argument("--amb-temp", type=float, default=20.0, help="Ambient temperature")
parser.add_argument("--trg-temp", type=float, default=200.0, help="Target temperature")
parser.add_argument("--v-offset", type=float, default=3.0, help="Offset voltage")
parser.add_argument("--min-voltage", type=float, default=0.0, help="Minimum voltage")
parser.add_argument("--max-voltage", type=float, default=24.0, help="Maximum voltage")
parser.add_argument("--area", type=float, default=1e-4, help="Surface area of the heater")
parser.add_argument("--heat-coeff", type=float, default=100.0, help="Heat transfer coefficient")
parser.add_argument("--voltage-coeff", type=float, default=1.0, help="Voltage coefficient")
parser.add_argument("--inertia", type=float, default=0.99, help="System inertia")
args = parser.parse_args()
# Plots the simulated temperatures.
plt.figure()
for kp, ki, kd in itertools.product(args.kp, args.ki, args.kd):
# Simulator.
simulator = HeaterSimulator(
dt=args.dt,
amb_temp=args.amb_temp,
min_voltage=args.min_voltage,
max_voltage=args.max_voltage,
heat_coeff=args.heat_coeff,
area=args.area,
voltage_coeff=args.voltage_coeff,
inertia=args.inertia,
)
# Controller.
controller = PIDController(
dt=args.dt,
trg_temp=args.trg_temp,
kp=kp,
ki=ki,
kd=kd,
v_offset=args.v_offset,
)
# Heater starts at ambient temperature.
temperatures = [simulator.temperature]
voltages = [0.0]
times = [i * args.dt for i in range(1, args.total_steps + 1)]
for _ in times:
voltage = controller.step(simulator.temperature)
voltages.append(voltage)
simulator.step(voltage)
temperatures.append(simulator.temperature)
times = [0.0] + times
# Plot temperature.
plt.plot(times, temperatures, label=f"Kp = {kp:.4g}, Ki = {ki:.4g}, Kd = {kd:.4g}")
plt.ylabel("Temperature")
# Plot voltages.
# plt.plot(times, voltages, label=f"Kp = {kp:.4g}")
# plt.ylabel("Voltage")
plt.xlabel("Time")
plt.legend()
plt.show()
if __name__ == "__main__":
main()
The snippet below has just the code for the controller, without the boilerplate for running it.
class PIDController:
def __init__(
self,
dt: float,
trg_temp: float,
kp: float,
ki: float,
kd: float,
v_offset: float,
) -> None:
"""Initializes a simple controller.
Args:
dt: The timestep size, in seconds
trg_temp: The target temperature
kp: The P scaling constant
ki: The I scaling constant
kd: The D scaling constant
v_offset: The zero point voltage
"""
self.dt = dt
self.trg_temp = trg_temp
self.kp = kp
self.ki = ki
self.kd = kd
self.v_offset = v_offset
self.prev_error: Optional[float] = None
self.acc_error: Optional[float] = None
def step(self, temperature: float) -> float:
"""Gets the target voltage for the current timestep.
Args:
temperature: The last observed temperature
Returns:
The input voltage for the next timestep
"""
error = self.trg_temp - temperature
# Proportional control.
p_term = self.kp * error
# Integral control.
acc_error = error if self.acc_error is None else error + self.acc_error
self.acc_error = acc_error
i_term = self.ki * acc_error
# Derivative control.
delta_error = 0.0 if self.prev_error is None else error - self.prev_error
self.prev_error = error
d_term = self.kd * delta_error
return p_term + i_term + d_term + self.v_offset
How Can you Make One Yourself?
Now that we’ve figured out the basic formulation for PID controllers, how can we figure out the values for , and which give us the best behavior?
There are a few methods for doing this, and it depends a lot on the particular scenario. Some relevant questions:
- Can you run the control algorithm many times, or is it important to run it only a few times?
- Is there a lot of noise in the system, or if you run the same control algorithm with the same parameters will the result be relatively similar each time?
There are many packages and techniques which will figure out these parameters for you, but if you’re in a pinch you can follow the approach below.
- Choose an objective to minimize
- Do a grid search over , and
- Choose the values of , and which minimize that objective
Define the Objective to Minimize
For most PID controllers, you care about making the output reach the set point as quickly as possible, without overshoot. Different applications can tolerate different amount of overshoot and undershoot, so the metric might vary. However, in this application I’m going to choose a simple error function which optimizes for both quickly reaching the target and not overshooting, by taking the absolute error when the output is less than the set point and the squared error when the output is greater than the set point.
where is the error at time , is the loss, is the timestep size, and is the total number of timesteps.
Do a Grid Search over , and
I’ve included a script which can be used for sweeping different PID configurations for our original simulation.
import argparse
import itertools
from typing import List, Optional, Tuple
import matplotlib.pyplot as plt
class PIDController:
def __init__(
self,
dt: float,
trg_temp: float,
kp: float,
ki: float,
kd: float,
v_offset: float,
) -> None:
"""Initializes a simple controller.
Args:
dt: The timestep size, in seconds
trg_temp: The target temperature
kp: The P scaling constant
ki: The I scaling constant
kd: The D scaling constant
v_offset: The zero point voltage
"""
self.dt = dt
self.trg_temp = trg_temp
self.kp = kp
self.ki = ki
self.kd = kd
self.v_offset = v_offset
self.prev_error: Optional[float] = None
self.acc_error: Optional[float] = None
def step(self, temperature: float) -> Tuple[float, float]:
"""Gets the target voltage for the current timestep.
Args:
temperature: The last observed temperature
Returns:
The input voltage for the next timestep
"""
error = self.trg_temp - temperature
# Proportional control.
p_term = self.kp * error
# Integral control.
acc_error = error if self.acc_error is None else error + self.acc_error
self.acc_error = acc_error
i_term = self.ki * acc_error
# Derivative control.
delta_error = 0.0 if self.prev_error is None else error - self.prev_error
self.prev_error = error
d_term = self.kd * delta_error
return p_term + i_term + d_term + self.v_offset, error
class HeaterSimulator:
def __init__(
self,
dt: float,
amb_temp: float,
min_voltage: float,
max_voltage: float,
heat_coeff: float,
area: float,
voltage_coeff: float,
inertia: float,
) -> None:
"""Initializes the heater simulator.
Args:
dt: The timestep size, in seconds
amb_temp: The ambient temperature
min_voltage: The minimum input voltage
max_voltage: The maximum input voltage
heat_coeff: Heat transfer coefficient
area: Heater surface area
voltage_coeff: The voltage-to-temperature-delta coefficient
inertia: System inertia
"""
self.dt = dt
self.amb_temp = amb_temp
self.min_voltage = min_voltage
self.max_voltage = max_voltage
self.heat_coeff = heat_coeff
self.area = area
self.voltage_coeff = voltage_coeff
self.inertia = inertia
# Heater temperatures starts at the ambient temperature.
self.temperature = amb_temp
# Add some inertia to dtemp.
self.dtemp = 0.0
def step(self, voltage: float) -> None:
"""Runs the simulator for one step.
Args:
voltage: The input voltage
"""
q_rate = self.heat_coeff * self.area * (self.amb_temp - self.temperature)
v_rate = self.voltage_coeff * voltage
trg_dtemp = q_rate + v_rate
self.dtemp = self.inertia * self.dtemp + (1 - self.inertia) * trg_dtemp
self.temperature += self.dtemp * self.dt
def main() -> None:
parser = argparse.ArgumentParser(description="Heater PID simulation")
parser.add_argument("--kp", type=float, nargs="+", required=True, help="P scale")
parser.add_argument("--ki", type=float, nargs="+", required=True, help="I scale")
parser.add_argument("--kd", type=float, nargs="+", required=True, help="D scale")
parser.add_argument("--plot", type=str, choices=["kp", "ki", "kd"], required=True, help="Which to plot")
parser.add_argument("--num-samples", type=int, default=100, help="Number of samples")
parser.add_argument("--dt", type=float, default=0.01, help="Timestep size")
parser.add_argument("--total-steps", type=int, default=10000, help="Number of simulation steps")
parser.add_argument("--amb-temp", type=float, default=20.0, help="Ambient temperature")
parser.add_argument("--trg-temp", type=float, default=200.0, help="Target temperature")
parser.add_argument("--v-offset", type=float, default=3.0, help="Offset voltage")
parser.add_argument("--min-voltage", type=float, default=0.0, help="Minimum voltage")
parser.add_argument("--max-voltage", type=float, default=24.0, help="Maximum voltage")
parser.add_argument("--area", type=float, default=1e-4, help="Surface area of the heater")
parser.add_argument("--heat-coeff", type=float, default=100.0, help="Heat transfer coefficient")
parser.add_argument("--voltage-coeff", type=float, default=1.0, help="Voltage coefficient")
parser.add_argument("--inertia", type=float, default=0.99, help="System inertia")
args = parser.parse_args()
def error_func(error: float) -> float:
return error if error > 0 else error**2
def get_error(kp: float, ki: float, kd: float) -> float:
# Simulator.
simulator = HeaterSimulator(
dt=args.dt,
amb_temp=args.amb_temp,
min_voltage=args.min_voltage,
max_voltage=args.max_voltage,
heat_coeff=args.heat_coeff,
area=args.area,
voltage_coeff=args.voltage_coeff,
inertia=args.inertia,
)
# Controller.
controller = PIDController(
dt=args.dt,
trg_temp=args.trg_temp,
kp=kp,
ki=ki,
kd=kd,
v_offset=args.v_offset,
)
times = [i * args.dt for i in range(1, args.total_steps + 1)]
total_error = 0.0
for _ in times:
voltage, error = controller.step(simulator.temperature)
simulator.step(voltage)
total_error += error_func(error) * args.dt
return total_error
kps = args.kp
kis = args.ki
kds = args.kd
index = 0 if args.plot == "kp" else 1 if args.plot == "ki" else 2
def linspace(vals: List[float]) -> List[float]:
assert len(vals) == 2, f"Expected `{args.plot}` to have exactly two items, not {len(vals)}"
min_val, max_val = vals
return [i * (max_val - min_val) / (args.num_samples - 1) + min_val for i in range(args.num_samples)]
if index == 0:
kcs, kas, kbs = ("Kp", linspace(kps)), ("Ki", kis), ("Kd", kds)
elif index == 1:
kcs, kas, kbs = ("Ki", linspace(kis)), ("Kp", kps), ("Kd", kds)
else:
kcs, kas, kbs = ("Kd", linspace(kds)), ("Kp", kps), ("Ki", kis)
plt.figure()
for ka, kb in itertools.product(kas[1], kbs[1]):
values: List[float] = []
errors: List[float] = []
for kc in kcs[1]:
vals = {kas[0]: ka, kbs[0]: kb, kcs[0]: kc}
kp, ki, kd = vals["Kp"], vals["Ki"], vals["Kd"]
values.append(kc)
errors.append(get_error(kp, ki, kd))
plt.plot(values, errors, label=f"{kas[0]}: {ka:.3g}, {kbs[0]}: {kb:.3g}")
plt.xlabel(["Kp", "Ki", "Kd"][index])
plt.ylabel("Error")
plt.semilogy()
plt.legend()
plt.show()
if __name__ == "__main__":
main()
The snippet below contains just the code for the controller, without the code for running it.
def error_func(error: float) -> float:
return error if error > 0 else error**2
def get_error(kp: float, ki: float, kd: float) -> float: # Simulator.
simulator = HeaterSimulator(
dt=args.dt,
amb_temp=args.amb_temp,
min_voltage=args.min_voltage,
max_voltage=args.max_voltage,
heat_coeff=args.heat_coeff,
area=args.area,
voltage_coeff=args.voltage_coeff,
inertia=args.inertia,
)
# Controller.
controller = PIDController(
dt=args.dt,
trg_temp=args.trg_temp,
kp=kp,
ki=ki,
kd=kd,
v_offset=args.v_offset,
)
times = [i * args.dt for i in range(1, args.total_steps + 1)]
total_error = 0.0
for _ in times:
voltage, error = controller.step(simulator.temperature)
simulator.step(voltage)
total_error += error_func(error) * args.dt
return total_error
The script can be run, for example, using the command below:
python sweep.py --kp 0.0 3.0 --ki 0.0 --kd 0.0 10.0 50.0 100.0 --plot kp
Running this command gives the following plot of the error curves generated when varying for different values of :
As this graph shows, the ideal value of (the lowest point in the error curve) increases as we increase our value for . This makes sense intuitively; by increasing the derivative term, the temperature will not shoot up as quickly for the same value of , but we can safely use a higher without worrying about overshooting.
Choose the values of , and which minimize that objective
Now that we’ve looked at a few different configurations, we can just choose the configuration which minimizes our objective.
We can plot the associated temperature curve using the command below:
python printer.py --kp 1.65 --ki 0.0 --kd 100.0
It looks reasonable, and definitely better than our original curve.
We can do a much more careful job and get a better curve, but this is pretty reasonable for our toy problem. In fact, for the default parameters, we can just make and really large and get very close to an ideal curve. It’s kind of fun to play around with different values for --heat-coeff
, --voltage-coeff
and --inertia
to see how that changes the ideal PID parameters.