Ben's Blog
Published on
Reading time
2 min read

Monitoring Background GPU Usage

Python code snippit for doing background GPU monitoring using `nvidia-smi`.

I was recently trying to log my GPU usage to Tensorboard for a training job and found that calling nvidia-smi on every step, or at some interval, was eating up my performance. I rewrote it into a clean daemon process and thought I should share it here for other people who might be in the same situation.

import logging
import multiprocessing as mp
import os
import re
import subprocess as sp
from dataclasses import dataclass
from typing import Iterable

logger = logging.getLogger(__name__)

NUMBER_REGEX = re.compile(r"[\d\.]+")

FIELDS = ["index", "memory.total", "memory.used", "temperature.gpu", "utilization.gpu"]


@dataclass(frozen=True)
class GPUStats:
    index: int
    memory_used: float
    temperature: float
    gpu_utilization: float


def parse_number(s: str) -> float:
    match = NUMBER_REGEX.search(s)
    if match is None:
        raise ValueError(s)
    return float(match.group())


def parse_gpu_stats(row: str) -> GPUStats:
    cols = row.split(",")
    index = int(cols[0].strip())
    (
        memory_total,
        memory_used,
        temperature,
        gpu_utilization,
    ) = (parse_number(col) for col in cols[1:])

    return GPUStats(
        index=index,
        memory_used=100 * memory_used / memory_total,
        temperature=temperature,
        gpu_utilization=gpu_utilization,
    )


def gen_gpu_stats(loop_secs: int = 5) -> Iterable[GPUStats]:
    fields = ",".join(FIELDS)

    # This command loops `nvidia-smi` forever, yielding rows of the requested
    # fields, which are then parsed to the dataclass above.
    command = f"nvidia-smi --query-gpu={fields} --format=csv --loop={loop_secs}"

    with sp.Popen(command.split(), stdout=sp.PIPE, universal_newlines=True) as proc:
        stdout = proc.stdout
        assert stdout is not None
        rows = iter(stdout.readline, "")
        for row in rows:
            try:
                yield parse_gpu_stats(row)
            except ValueError:  # Handles the first row and misc errors.
                continue


def gpu_stats_worker(ping_interval: int, queue: "mp.Queue[GPUStats]") -> None:
    # Simply iterates from the coroutine and puts items into the queue.
    for gpu_stat in gen_gpu_stats(ping_interval):
        queue.put(gpu_stat)

Then, from your training loop, you can do something like this:

import atexit
from typing import Dict

gpu_stats: Dict[int, GPUStats] = {}

# Starts the `nvidia-smi` process.
queue: "mp.Queue[GPUStats]" = mp.Queue()
proc = mp.Process(target=gpu_stats_worker, args=(config, queue), daemon=True)
proc.start()

# This shouldn't be necessary, but just for fun.
atexit.register(proc.kill)

for batch in dataloader:

    ...

    # Gets any new GPU stats
    while not queue.empty():
        gpu_stat: GPUStats = queue.get()
        gpu_stats[gpu_stat.index] = gpu_stat

    # Logs statistics to Tensorboard
    for gpu_stat in self.gpu_stats.values():
        tb_writer.add_scalar(f"gpu-{gpu_stat.index}/mem_used", gpu_stat.memory_used)
        tb_writer.add_scalar(f"gpu-{gpu_stat.index}/temp", gpu_stat.temperature)
        tb_writer.add_scalar(f"gpu-{gpu_stat.index}/gpu_util", gpu_stat.gpu_utilization)

Hope this helps!